The SVM class
(バージョン情報なし。おそらく SVN 版にしか存在しないでしょう)
導入
クラス概要
定義済み定数
SVM Constants
-
SVM::C_SVC -
The basic C_SVC SVM type. The default, and a good starting point
-
SVM::NU_SVC -
The NU_SVC type uses a different, more flexible, error weighting
-
SVM::ONE_CLASS -
One class SVM type. Train just on a single class, using outliers as negative examples
-
SVM::EPSILON_SVR -
A SVM type for regression (predicting a value rather than just a class)
-
SVM::NU_SVR -
A NU style SVM regression type
-
SVM::KERNEL_LINEAR -
A very simple kernel, can work well on large document classification problems
-
SVM::KERNEL_POLY -
A polynomial kernel
-
SVM::KERNEL_RBF -
The common Gaussian RBD kernel. Handles non-linear problems well and is a good default for classification
-
SVM::KERNEL_SIGMOID -
A kernel based on the sigmoid function. Using this makes the SVM very similar to a two layer sigmoid based neural network
-
SVM::KERNEL_PRECOMPUTED -
A precomputed kernel - currently unsupported.
-
SVM::OPT_TYPE -
The options key for the SVM type
-
SVM::OPT_KERNEL_TYPE -
The options key for the kernel type
-
SVM::OPT_DEGREE -
SVM::OPT_SHRINKING -
Training parameter, boolean, for whether to use the shrinking heuristics
-
SVM::OPT_PROBABILITY -
Training parameter, boolean, for whether to collect and use probability estimates
-
SVM::OPT_GAMMA -
Algorithm parameter for Poly, RBF and Sigmoid kernel types.
-
SVM::OPT_NU -
The option key for the nu parameter, only used in the NU_ SVM types
-
SVM::OPT_EPS -
The option key for the Epsilon parameter, used in epsilon regression
-
SVM::OPT_P -
Training parameter used by Episilon SVR regression
-
SVM::OPT_COEF_ZERO -
Algorithm parameter for poly and sigmoid kernels
-
SVM::OPT_C -
The option for the cost parameter that controls tradeoff between errors and generality - effectively the penalty for misclassifying training examples.
-
SVM::OPT_CACHE_SIZE -
Memory cache size, in MB
目次
- SVM::__construct — SVM オブジェクトを新規構築
- SVM::crossvalidate — Test training params on subsets of the training data.
- SVM::getOptions — Return the current training parameters
- SVM::setOptions — Set training parameters
- SVM::train — Create a SVMModel based on training data